Radiative-corrections for the MUSE experiment

Lin Li and Steffen Strauch University of South Carolina

for the MUSE Collaboration

Supported in parts by the U.S. National Science Foundation: NSF PHY-1812382. The MUSE experiment is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Paul Scherrer Institute, and the US-Israel Binational Science Foundation.

Radiative Corrections Workshop, Stoney Brook (online), July 9–10, 2020

MUon Scattering Experiment (MUSE) at PSI

Direct test of up and ep interactions in a scattering experiment:

- higher precision than previously for μp,
- low-Q² region for sensitivity to the **proton charge radius**, $Q^2 = 0.002$ to 0.07 GeV²,
- with μ+,μ- and e+,e- to study possible **2**γ mechanisms,
- with μp and ep to have direct μ/e comparison.

MUSE

$$e^{-}p \rightarrow e^{-}p$$
 $e^{+}p \rightarrow e^{+}p$
 $\mu^{-}p \rightarrow \mu^{-}p$
 $\mu^{+}p \rightarrow \mu^{+}p$

Projected MUSE proton charge-radius results

How different are the e/µ radii?

(truncation error largely cancels) Sensitivity to differences in extracted e/μ radii:

 $\sigma(r_e-r_\mu) \approx 0.005 \text{ fm}$

What is the radius?

Absolute values of extracted e/µ radii (assuming no +/- difference seen):

 $\sigma(r_e)$, $\sigma(r_{\mu}) \approx 0.008$ fm

Comparisons of, e.g., **e to** μ or of μ + **to** μ - are insensitive to many of the systematics

MUSE provides a high precision test of two-photon exchange for electrons and muons at low Q²

TPE: largest theoretical uncertainty in low-energy proton structure.

Projected relative uncertainty in the ratio of μ +p to μ -p elastic cross sections. Estimated systematics: 0.2%.

$$\sigma_{e^{\pm}p} = |\mathcal{M}_{1\gamma}|^2 \pm 2\Re\{\mathcal{M}^{\dagger}_{1\gamma}\mathcal{M}_{2\gamma}\} + \cdots$$

sign change with lepton-charge

$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} = 1 + 4 \frac{\Re\{\mathcal{M}^{\dagger}_{1\gamma}\mathcal{M}_{2\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}$$

MUSE directly compares ep to µp cross-sections

Projected relative statistical uncertainties in the ratio of ep to μp elastic **cross sections**. Estimated systematics $\approx 0.5\%$.

The relative statistical uncertainties in the form factors are half as large.

MUSE is an unusual scattering experiment

Measure e[±] and µ[±] elastic scattering off a liquid hydrogen target.

$$20^{\circ} < \theta < 100^{\circ}$$

 $-45^{\circ} < \phi < 45^{\circ}$
 $p = 115, 161, 210 \text{ MeV/c}$

Challenges

- Secondary beam: identifying and tracking beam particles to target,
- Low beam flux: large angle, nonmagnetic spectrometer,
- Background: e.g., Møller scattering and muon decay in flight.

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det].

The size of the radiative corrections depends on the detector properties and event selection

e.g.

Incident lepton

- beam momentum
- multiple scattering
- external Bremsstrahlung

- angular acceptance
- particle momentum (magnitude not precisely measured)

Internal Bremsstrahlung

e.g., initial-state radiation

Recoiling proton remains unobserved

MUSE detector system for TOF measurements

Beam Hodoscope

Beam Monitor

not to scale

Beam hodoscope planes C & D (Rutgers)

Beam monitor SC bars (UofSC)

Examples of two experimental time-of-flight

Counts

Counts

distributions

The agreement of the measured and calculated $\pi M1$ channel momenta is at the desired 0.2 – 0.3% level.

$$\sigma_{p_0} = 0.002 \cdot p_0$$

MUSE tracking detectors

GEM detectors (Hampton Univ.)

- Set of three GEM detectors built for & run in OLYMPUS.
- Measure trajectories into the target to reconstruct the scattering kinematics.

Straw-tube tracker

(Hebrew University of Jerusalem + Temple)

- Two STT chambers with 5 vertical and 5 horizontal planes each (3000 straws total).
- The Straw Tube Tracker provides high-resolution and high-efficiency tracking of the scattered particles from the target.

Reconstruction of scattering angle

Position resolution: GEM 70 μm and STT 120 μm.

Full Geant4 simulation including detector material and target.

Scattering-angular resolution is dominated by multiple scattering and ≤ 20 mrad.

$$\sigma_{\theta} = 20 \text{ mrad}$$

Detection of scattered lepton in SPS

Fast and efficient scattered-particle scintillators (SPS) (University of South Carolina) provide event trigger and particle ID

• Front wall: 18 bars (6 cm x 3 cm x 120 cm), σ_t < 50 ps

• Rear wall: 28 bars (6 cm x 6 cm x 220 cm), σ_t < 60 ps

Calorimeter

Beam line view from downstream side of MUSE

Calorimeter in beamline downstream of BM 32 lead-glas crystals (4 cm x 4 cm x 30 cm)

Preliminary performance tests

Sum of light output of set of nine calorimeter blocks

$$\frac{\sigma_E}{E} = \frac{5\%}{\sqrt{E \text{ (GeV)}}}$$

Calorimeter can be used to suppress initialstate bremsstrahlung

Simulated bremsstrahlung spectrum, folded with expected detector resolution

 $\sigma_{E_{\nu}} pprox 10 \, \mathrm{MeV}$

Event-Generator Requirements

- Include emission of hard radiated photon, beyond soft-photon approximation.
- Include the mass of lepton:
 - Not using approximation $-q^2 \gg m^2$.
 - Accurate calculation of the event kinematics.
- Suitable for Monte Carlo simulations
- Models
 - **ESEPP** (Gramolin et al.)
 - Olympus / Darklight
 - Heavy baryon chiral perturbation theory (F. Myhrer and collaborators)
 - ELRADGEN (A. Afanasev et al.)

•

Elastic Scattering of Electrons and Positrons on Protons (ESEPP)

first Born approximation

first-order bremsstrahlung process

$l^{\pm}p \rightarrow l'^{\pm}p'\gamma$

virtual-photon corrections

vacuum polarization

lepton/proton vertex corrections

TPE corrections

Lepton-charge dependence

Cross section of charged lepton scattering on protons:

$$\sigma(\ell^{\pm}p) \propto |\mathcal{M}_{\mathsf{Born}}|^{2} + \\ 2\Re\left[\mathcal{M}_{\mathsf{Born}}^{\dagger}\left(\mathcal{M}_{\mathsf{Vac}} + \mathcal{M}_{\mathsf{Vert}}^{\ell} + \mathcal{M}_{\mathsf{Vert}}^{p}\right)\right] + \\ 2\Re\left[\mathcal{M}_{\mathsf{Born}}^{\dagger}\left(\mathcal{M}_{\mathsf{box}} + \mathcal{M}_{\mathsf{xbox}}\right)\right] + \\ \left|\mathcal{M}_{\mathsf{brems}}^{\mathsf{li}} + \mathcal{M}_{\mathsf{brems}}^{\mathsf{lf}}\right|^{2} + \left|\mathcal{M}_{\mathsf{brems}}^{\mathsf{pi}} + \mathcal{M}_{\mathsf{brems}}^{\mathsf{pf}}\right|^{2} + \\ 2\Re\left[\left(\mathcal{M}_{\mathsf{brems}}^{\mathsf{li}} + \mathcal{M}_{\mathsf{brems}}^{\mathsf{lf}}\right)^{\dagger}\left(\mathcal{M}_{\mathsf{brems}}^{\mathsf{pi}} + \mathcal{M}_{\mathsf{brems}}^{\mathsf{pf}}\right)\right] + \mathcal{O}(\alpha^{4})$$

Charge-odd terms:

Interference TPE term

Interference bremsstrahlung term

The interference-TPE term and the interference-bremsstrahlung terms change sign depending on the sign of the lepton's charge.

The ESEPP event generator

- ESEPP generates unweighted events
- Two types of events: elastic (analytical integration) and inelastic (numerical integration)
- First-order
 bremsstrahlung is
 taken into account in
 both cases

Minimalistic MUSE simulation

 $\Delta\Omega_1$

Numerical integration of Bremsstrahlung cross-section

$$\frac{d\sigma}{d\Omega_{l}}(p'_{l,min}) = \int_{p'_{l}} \int_{\Omega_{\gamma}} \frac{d\sigma_{\text{brems}}}{d\Omega_{l}d\Omega_{\gamma}dp'_{l}} d\Omega_{l}dp'_{l}$$

 $\frac{d\sigma}{d\Omega_{I}}(p'_{l,min}) = \frac{d\sigma_{0}}{d\Omega_{I}} \left[1 + \delta(p'_{l,min}) \right]$

Born cross-section

$$\delta = \frac{d\sigma}{d\Omega_l} / \frac{d\sigma_0}{d\Omega_l} - 1$$

Fixed momentum lepton beam

ESEPP event generator

Calorimeter Veto on forward going high-momentum photons

$ep \rightarrow e'p\gamma$ Cross section in MUSE kinematics

If the incident lepton loses energy due to emission of a hard photon then the probability for this lepton to be scattered by the proton increases.

Simulated downstream $ep \rightarrow e'p\gamma$ photon distribution

below calorimeter threshold

Radiative corrections for electron-scattering data in MUSE kinematics

Rapidly changing radiative corrections for small p'min.

(> 1% change / MeV/c)

 $= \alpha/\alpha^0$

Veto on downstream photons keep corrections small and reduces p'min dependence.

Radiative corrections for muon-scattering data in MUSE kinematics

Small radiative corrections

Corrections nearly independent of p'min

Calorimeter cut without effect on the data

Uncertainties in the radiative corrections: ep

Preliminary results

σ _δ (e-)	115 MeV			210 MeV		
	20°	60°	100°	20°	60°	100°
p'min	0.05%	0.29%	0.56%	0.03%	0.23%	0.63%
p ₀	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%
θ	0.13%	0.07%	0.05%	0.10%	0.14%	0.01%
Eγ	0.55%	0.57%	0.58%	0.35%	0.40%	0.38%
Total	0.57%	0.65%	0.81%	0.37%	0.48%	0.74%

Uncertainties in the radiative corrections: µp

Preliminary results

σ _δ (μ-)	115 MeV			210 MeV		
	20°	60°	100°	20°	60°	100°
p 'min	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
p ₀	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
θ	0.06%	0.02%	0.04%	0.04%	0.03%	0.04%
Eγ	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Total	0.06%	0.02%	0.04%	0.04%	0.03%	0.04%

Cross-section asymmetries

The interference-TPE term and the interference-bremsstrahlung terms change sign depending on the sign of the lepton's charge.

More work needs to be done

- Improvement of the event sampling to more efficiently cover the full angular acceptance of the MUSE setup.
- Inclusion of the event generator in a full MUSE simulation.
- Understand the theoretical uncertainties, model dependence, and possible improvements in the calculations deep in the radiative tail.
- Separating the overall vs. the point-to-point radiative correction.
- Perform more dedicated calorimeter calibrations.

Summary

- MUSE is a high-precision experiment to measure the proton charge radius, study possible 2γ mechanisms, and have a direct μ/e comparison of the elastic cross-sections.
- The MUSE setup has unique implications for the determination of radiative corrections:
 - Without a magnetic spectrometer, MUSE does not measure the final-state lepton momentum precisely.
 - A dedicated downstream photon detector helps to suppress initial-state radiation effects.
- ESEPP simulations show uncertainties in radiative corrections to be lower than 1%.